论文标题
平面工作表面的完整分析超级层压1D解决方案
Full analytical ultrarelativistic 1D solutions of a planar working surface
论文作者
论文摘要
我们表明,可以通过分析工作表面的情况来分析解决状态的一维平面超偏移性冲击管问题,即,对于问题的初始不连续性,问题的最初不连续性与问题形成了与接触不连续性分离的问题的两种冲击波。该过程基于对相对论冲击波,Taub绝热和执行Lorentz转换的广泛使用,以在静止时为外部观察者提供足够的参考系统中的解决方案。在参考系统之间转换时,使用与Lorentz因子相关的一组非常有用的定理发现了解决方案。在工作表面内消散的能量与在相对论天体物理喷气机中观察到的光曲线的研究有关,因此,假设在射流底部注入了超层次的周期性速度,我们为这种现象提供了完整的分析解决方案。
We show that the 1D planar ultrarelativistic shock-tube problem with an ultrarelativistic polytropic equation of state can be solved analytically for the case of a working surface, i.e. for the case when an initial discontinuity on the hydrodynamical quantities of the problem form two shock waves separating from a contact discontinuity. The procedure is based on the extensive use of the Taub jump conditions for relativistic shock waves, the Taub adiabatic and performing Lorentz transformations to present the solution in a system of reference adequate for an external observer at rest. The solutions are found using a set of very useful theorems related to the Lorentz factors when transforming between systems of reference. The energy dissipated inside the working surface is relevant for studies of light curves observed in relativistic astrophysical jets and so, we provide a full analytical solution for this phenomenon assuming an ultrarelativistic periodic velocity injected at the base of the jet.