论文标题

通过近端金属板在2D半导体中提高量子产率

Boosting quantum yields in 2D semiconductors via proximal metal plates

论文作者

Lee, Yongjun, Kumar, Anshuman, Forte, Johnathas D'arf Severo, Chaves, Andrey, Roy, Shrawan, Taniguchi, Takashi, Watanabe, Kenji, Chernikov, Alexey, Jang, Joon I., Low, Tony, Kim, Jeongyong

论文摘要

单层过渡金属二分法(1L-TMD)具有巨大的潜力,作为原子薄的直接带隙半导体,可以用作量子光子设备方便的构建块。然而,由于缺陷陷阱和TMD中强烈的激子相互作用引起的短期激子寿命显着限制了此类材料中激子发射的效率。在这里,我们表明,可以使用由硝酸六角硼的多层隔开的超金au膜底物有效筛选1L-WS2中的激子 - 脱极场相互作用。在此几何形状下,由于金属内形成的有效图像偶极子,偶极激子 - 外激体的相互作用变成四极质 - 四极杆。被抑制的激子 - 外激体相互作用导致量子级的显着提高,这也伴随着降低激子 - 外激体歼灭(EEA)速率,如时间分解的光学测量所证实。介绍偶极 - 偶极相互作用筛选的半经典模型可定性地捕获EEA对激子密度的依赖性。我们的结果表明,TMD中的基本EEA过程可以通过近端金属筛选来设计,这代表了高效2D光发射器的实用方法。

Monolayer transition metal dichalcogenides (1L-TMDs) have tremendous potential as atomically thin, direct bandgap semiconductors that can be used as convenient building blocks for quantum photonic devices. However, the short exciton lifetime due to the defect traps and the strong exciton-exciton interaction in TMDs has significantly limited the efficiency of exciton emission from this class of materials. Here, we show that exciton-exciton dipolar field interaction in 1L-WS2 can be effectively screened using an ultra-flat Au film substrate separated by multilayers of hexagonal boron nitride. Under this geometry, dipolar exciton-exciton interaction becomes quadrupole-quadrupole interaction because of effective image dipoles formed inside the metal. The suppressed exciton-exciton interaction leads to a significantly improved quantum yield by an order of magnitude, which is also accompanied by a reduction in the exciton-exciton annihilation (EEA) rate, as confirmed by time-resolved optical measurements. A semiclassical model accounting for the screening of the dipole-dipole interaction qualitatively captures the dependence of EEA on exciton densities. Our results suggest that fundamental EEA processes in the TMD can be engineered through proximal metallic screening, which represents a practical approach towards high-efficiency 2D light emitters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源