论文标题
$ n $ fold Mellin-Barnes积分的多个系列表示
Multiple Series Representations of $N$-fold Mellin-Barnes Integrals
论文作者
论文摘要
Mellin-Barnes(MB)积分是出现在数学和物理学的许多分支中的知名对象,范围从超几型函数理论到量子田地理论,固态物理学,渐近理论等。依靠基于圆锥形船体的简单几何分析,我们在这里显示了解决这个重要问题的解决方案。我们的方法可以应用于共振剂(即对数)和非谐振病例,并取决于MB积分的形式,它会产生收敛的串联表示或分歧渐近线。当获得收敛序列时,该方法通常允许确定每个系列表示的单个主系列,这大大简化了收敛研究和/或数值检查。我们与本文一起提供了我们技术的数学实施,并提供了应用程序的示例。其中,我们介绍了与单位传播器力量的六角形和双盒形成型Feynman积分的首次评估。
Mellin-Barnes (MB) integrals are well-known objects appearing in many branches of mathematics and physics, ranging from hypergeometric functions theory to quantum field theory, solid state physics, asymptotic theory, etc. Although MB integrals have been studied for more than one century, until now there is no systematic computational technique of the multiple series representations of $N$-fold MB integrals for $N>2$. Relying on a simple geometrical analysis based on conic hulls, we show here a solution to this important problem. Our method can be applied to resonant (i.e logarithmic) and nonresonant cases and, depending on the form of the MB integrand, it gives rise to convergent series representations or diverging asymptotic ones. When convergent series are obtained the method also allows, in general, the determination of a single master series for each series representation, which considerably simplifies convergence studies and/or numerical checks. We provide, along with this paper, a Mathematica implementation of our technique with examples of applications. Among them, we present the first evaluation of the hexagon and double box conformal Feynman integrals with unit propagator powers.