论文标题

调整后的卡方检验,用于学位校正模型

Adjusted chi-square test for degree-corrected block models

论文作者

Zhang, Linfan, Amini, Arash A.

论文摘要

我们提出了对学度校正随机块模型(DCSBM)的合适性测试。该测试基于调整后的卡方统计量,用于测量$ n $多项式分布的组之间的平等性,该分布具有$ d_1,\ dots,d_n $观测值。在网络模型的上下文中,$ n $的数量比观测值数量($ d_i $)增长得多,$ d_i $,对应于节点$ i $的程度,因此设置偏离了经典的渐近学。我们表明,只要$ \ {d_i \} $的谐波平均值生长到无穷大,就可以在null下进行统计量的分配。依次应用时,该测试也可用于确定社区数量。该测试在邻接矩阵的压缩版本上运行,因此在学位上有条件,因此对大型稀疏网络具有高度可扩展性。我们结合了一个新颖的想法,即在测试$ K $社区时根据$(k+1)$ - 社区分配来压缩行。这种方法在不牺牲计算效率的情况下增加了连续应用中的功能,我们证明了它在恢复社区数量方面的一致性。由于测试统计量不依赖于特定的替代方案,因此其效用超出了顺序测试,可用于同时测试DCSBM家族以外的各种替代方案。特别是,我们证明该测试与具有社区结构的潜在可变性网络模型的一般家庭一致。

We propose a goodness-of-fit test for degree-corrected stochastic block models (DCSBM). The test is based on an adjusted chi-square statistic for measuring equality of means among groups of $n$ multinomial distributions with $d_1,\dots,d_n$ observations. In the context of network models, the number of multinomials, $n$, grows much faster than the number of observations, $d_i$, corresponding to the degree of node $i$, hence the setting deviates from classical asymptotics. We show that a simple adjustment allows the statistic to converge in distribution, under null, as long as the harmonic mean of $\{d_i\}$ grows to infinity. When applied sequentially, the test can also be used to determine the number of communities. The test operates on a compressed version of the adjacency matrix, conditional on the degrees, and as a result is highly scalable to large sparse networks. We incorporate a novel idea of compressing the rows based on a $(K+1)$-community assignment when testing for $K$ communities. This approach increases the power in sequential applications without sacrificing computational efficiency, and we prove its consistency in recovering the number of communities. Since the test statistic does not rely on a specific alternative, its utility goes beyond sequential testing and can be used to simultaneously test against a wide range of alternatives outside the DCSBM family. In particular, we prove that the test is consistent against a general family of latent-variable network models with community structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源