论文标题
牛顿后旋转预次预次倾向的影响
The effect of post-Newtonian spin precessions on the evolution of exomoons' obliquity
论文作者
论文摘要
推定的天然巨大卫星(Exomoons)引起了人们的关注,在其宿主主序列的可居住区内绕着木星状的行星绕着它们绕着旋转。预计将在主机行星的赤道平面中移动,其旋转$ {\ boldsymbol s} _ \ mathrm {s} $与其轨道角动量$ \ boldsymbol l $对齐,这反过来又与Planetare Spin $ {\ boldsymbol s} $ rmm MathR平行。如果特别是,这种角动量的常见倾斜度对卫星 - 星际行星黄道平面(假定固定,具有一定的值),则在恒星的外显子体上经历的纬度照射可能使它能够像我们所知道的那样维持其寿命,至少对于某些轨道构型。考虑了一个地球 - Analog(质量相似,\ textColor {black} {radius,ofdeness}和倾斜),从$ 5-10 $行星radii $ r_ \ mathrm {p} $从其木星式的宿主星球上旋转。由于宿主星球的一般相对论后的牛顿(PN)田地引起的de Sitter and-lense - 曲线 - 旋转预恢复,对外显子的可居住能力产生了影响。在这里,我通过识别卫星的斜率$ \ varepsilon_ \ mathrm {s} $中的长期变化来显示,其中变化可以为$ \ lyssim 10^\ Circ-100^\ circ $,具体取决于初始的旋转式配置,并带有初始的spin-orbit配置,并带有$ \ simeq 0.1 $ $ $ $ $ $ $ $ $ $ $ $ $百万的年度。同样,卫星的四极质量力矩$ j_2^\ mathrm {s} $会引起倾斜的变化,比PN更快,但不要取消它们。
Putative natural massive satellites (exomoons) has gained increasing attention, where they orbit Jupiter-like planets within the habitable zone of their host main sequence star. An exomoon is expected to move within the equatorial plane of its host planet, with its spin ${\boldsymbol S}_\mathrm{s}$ aligned with its orbital angular momentum $\boldsymbol L$ which, in turn, is parallel to the planetary spin ${\boldsymbol S}_\mathrm{p}$. If, in particular, the common tilt of such angular momenta to the satellite-planet ecliptic plane, assumed fixed, has certain values, the latitudinal irradiation experienced on the exomoon from the star may allow it to sustain life as we know it, at least for certain orbital configurations. An Earth--analog (similar in mass, \textcolor{black}{radius, oblateness} and obliquity) is considered, which orbits within $5-10$ planetary radii $R_\mathrm{p}$ from its Jupiter-like host planet. The de Sitter and Lense--Thirring spin precessions due to the general relativistic post-Newtonian (pN) field of the host planet have an impact on an exomoon's habitability for a variety of different initial spin-orbit configurations. Here, I show it by identifying long--term variations in the satellite's obliquity $\varepsilon_\mathrm{s}$, where variations can be $\lesssim 10^\circ-100^\circ$, depending on the initial spin-orbit configuration, with a timescale of $\simeq 0.1-1$ million years. Also the satellite's quadrupole mass moment $J_2^\mathrm{s}$ induces obliquity variations which are faster than the pN ones, but do not cancel them.