论文标题
$ f(r)$ cosmology的原始加热自发衰变
Primordial reheating in $f(R)$ cosmology by spontaneous decay of scalarons
论文作者
论文摘要
我们采用一个可行的$ f(r)$重力模型,能够给出通货膨胀阶段,以研究由于粒子的创造而导致随后的重新加热阶段,而牺牲了scalaron场中的能量。由于量子力学有望在粒子创造中起主要作用,因此我们制定了一个合理的情况,即重新加热遵守海森伯格的不确定性原理,该原理对在配置空间中创建的粒子上施加约束。我们表明,只要标量场中可用的能量足以填充整个配置空间,颗粒的能量密度就会增长,从而获得最大值,从而有效地重新加热。除了这一最大值之外,可用的能量不足以填充整个配置空间,导致能量密度下降。 我们进一步发现,在通货膨胀阶段,能量密度的生长可忽略不计,该阶段持续$ \ sim 10^7 \,t _ {\ rm p} $,尽管在此阶段不断创建粒子。随后的重新加热阶段跨度为$ \ sim10^{11} \,t _ {\ rm p} $,它以$ \ sim 10^{5} \,t _ {\ rm p} $的持续良好定义的预热阶段开始,使得cross-over-over to photerilization to photerilization。发现热力化开始时的温度为$ t _ {\ rm th} \ sim 10^{12} $ gev,而加热温度估计为$ t_ {r} \ sim10^{13} $ gev。重要的是,这些估计来自单个参数,标量质量,$ m \ sim10^{ - 5} \,m _ {\ rm p} $。
We employ a viable $f(R)$ gravity model capable of giving an inflationary phase in order to study the subsequent reheating phase due to particle creation at the expense of energy in the scalaron field. Since quantum mechanics is expected to play a dominant role in particle creation, we formulate a plausible scenario of reheating obeying Heisenberg's uncertainty principle that imposes constraints on the particles created in the configuration space. We show that, so long as the energy available in the scalaron field is sufficient to populate the entire configuration space, the energy density of the particles grows, attaining a maximum value giving an efficient reheating. Beyond this maximum, the available energy becomes insufficient to populate the entire configuration space leading to a declining energy density. We further find that there is a negligible growth of energy density in the inflationary phase that lasts for $\sim 10^7 \, t_{\rm P}$, although particles are constantly created in this phase. The subsequent reheating phase spans for $\sim10^{11} \, t_{\rm P}$ and it begins with a well-defined preheating stage lasting for $\sim 10^{5} \, t_{\rm P}$, making a cross-over to a thermilization regime. The temperature at the beginning of the thermilization is found to be $T_{\rm th}\sim 10^{12}$ GeV, whereas the reheating temperature is estimated as $T_{r}\sim10^{13}$ GeV. Importantly, these estimates follow from a single parameter, the scalaron mass, $M\sim10^{-5} \, M_{\rm P}$.