论文标题
稳定属性和Dirichlet问题用于翻译孤子
Stability property and Dirichlet problem for translating solitons
论文作者
论文摘要
在本文中,我们证明,对于$ \ re^{n+k} $的hypersurface翻译孤子的平均曲率最小值为零。我们给出一些条件,在这些条件下,完整的高表情翻译孤子是稳定的。我们表明,如果其平均曲率的规范小于1,则加权体积可能具有指数增长。我们还研究了在更高的复合中翻译孤子的图形翻译问题的问题。
In this paper, we prove that the infimum of the mean curvature is zero for a translating solitons of hypersurface in $\re^{n+k}$. We give some conditions under which a complete hypersurface translating soliton is stable. We show that if the norm of its mean curvature is less than one, then the weighted volume may have exponent growth. We also study the Dirichlet problem for graphic translating solitons in higher codimensions.