论文标题

具有三角洲潜力的半古典限制

The semi-classical limit with a delta-prime potential

论文作者

Cacciapuoti, Claudio, Fermi, Davide, Posilicano, Andrea

论文摘要

我们考虑量子进化$ e^{ - i \ frac {t} {\ hbar}h_β}ψ_² (q,p)\ in \ mathbb {r}^{2} $,其中$h_β$表示正式的哈密顿$ - \ frac {\ hbar^{2}}}} {2m} {2m} {2m} {2m} \, β\,δ'_{0} $,带有$δ'_{0} $ dirac的dirac Delta分布的衍生物为$ x = 0 $ and $β$ a真实参数。我们表明,在半古典限制中,可以近似这样的量子进化(W.R.T. $ l^{2}(\ Mathbb {r})$ - norm- n norm,对于任何$ t \ in \ Mathbb {r} $ a collision the Collision time by $ e^{ e^{it l_ {b}} ϕ^{\ hbar} _ {x} $,其中$ a_ {t} = \ frac {p^{2} t} {2m} {2m} $,$ vary,$ dem,$ ϕ_ {x}}}}} $ l_ {b} $是将限制到$ \ MATHCAL {C}^{\ infty} _ {c}({\ Mathscr M} _ {0})$,$ {\ MATHSCR M} _ {0} _ {0} _ {0}: \ Mathbb {r}^{2} \,| \,Q \ neq 0 \} $($ -i $ times)是免费经典动力学的生成器。虽然此处使用的操作员$ l_ {b} $类似于我们以前的工作中出现的[C。 Cacciapuoti, D. Fermi, A. Posilicano, The semi-classical limit with a delta potential, Annali di Matematica Pura e Applicata (2020)] regarding the semi-classical limit with a delta potential, in the present case the approximation gives a smaller error: it is of order $\hbar^{7/2-λ}$, $0 < λ< 1/2$,事实证明,它是$ \ hbar^{3/2-λ} $,$ 0 <λ<3/2 $,用于增量电位。我们还为波和散射算子提供了相似的近似结果。

We consider the quantum evolution $e^{-i\frac{t}{\hbar}H_β} ψ_ξ^{\hbar}$ of a Gaussian coherent state $ψ_ξ^{\hbar}\in L^{2}(\mathbb{R})$ localized close to the classical state $ξ\equiv (q,p) \in \mathbb{R}^{2}$, where $H_β$ denotes a self-adjoint realization of the formal Hamiltonian $-\frac{\hbar^{2}}{2m}\,\frac{d^{2}\,}{dx^{2}} + β\,δ'_{0}$, with $δ'_{0}$ the derivative of Dirac's delta distribution at $x = 0$ and $β$ a real parameter. We show that in the semi-classical limit such a quantum evolution can be approximated (w.r.t. the $L^{2}(\mathbb{R})$-norm, uniformly for any $t \in \mathbb{R}$ away from the collision time) by $e^{\frac{i}{\hbar} A_{t}} e^{it L_{B}} ϕ^{\hbar}_{x}$, where $A_{t} = \frac{p^{2}t}{2m}$, $ϕ_{x}^{\hbar}(ξ) := ψ^{\hbar}_ξ(x)$ and $L_{B}$ is a suitable self-adjoint extension of the restriction to $\mathcal{C}^{\infty}_{c}({\mathscr M}_{0})$, ${\mathscr M}_{0} := \{(q,p) \in \mathbb{R}^{2}\,|\,q \neq 0\}$, of ($-i$ times) the generator of the free classical dynamics. While the operator $L_{B}$ here utilized is similar to the one appearing in our previous work [C. Cacciapuoti, D. Fermi, A. Posilicano, The semi-classical limit with a delta potential, Annali di Matematica Pura e Applicata (2020)] regarding the semi-classical limit with a delta potential, in the present case the approximation gives a smaller error: it is of order $\hbar^{7/2-λ}$, $0 < λ< 1/2$, whereas it turns out to be of order $\hbar^{3/2-λ}$, $0 < λ< 3/2$, for the delta potential. We also provide similar approximation results for both the wave and scattering operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源