论文标题
多体局部阶段中粒子波动的无限生长
Unlimited growth of particle fluctuations in many-body localized phases
论文作者
论文摘要
我们研究具有强势障碍的无旋转费米子(相当于Spin-1/2 Heisenberg链)的T-V链中的淬火动力学。对于这个多体定位的原型模型,我们最近认为,与已建立的图片相反,粒子并未完全局限。在这里,我们总结并扩展了我们先前的各种纠缠措施(例如数字和Hartley编号熵)的结果。我们特别研究了我们的数值数据可能的替代解释。我们发现,这些替代解释似乎都没有成立,在此过程中,发现了缺乏本地化的进一步有力证据。此外,我们通过与非相互作用的系统进行比较,我们获得了更多关于纠缠动力学和粒子波动的见解,在这些系统中我们得出了几个严格的界限。我们发现,这些界限的重新归一化版本在相互作用的情况下也存在,在这些情况下,它们为数字发现的数字和纠缠熵之间的比例关系提供了支持。
We study quench dynamics in a t-V chain of spinless fermions (equivalent to the spin-1/2 Heisenberg chain) with strong potential disorder. For this prototypical model of many-body localization we have recently argued that -- contrary to the established picture -- particles do not become fully localized. Here we summarize and expand on our previous results for various entanglement measures such as the number and the Hartley number entropy. We investigate, in particular, possible alternative interpretations of our numerical data. We find that none of these alternative interpretations appears to hold and, in the process, discover further strong evidence for the absence of localization. Furthermore, we obtain more insights into the entanglement dynamics and the particle fluctuations by comparing with non-interacting systems where we derive several strict bounds. We find that renormalized versions of these bounds also hold in the interacting case where they provide support for numerically discovered scaling relations between number and entanglement entropies.