论文标题

为什么In2O3可以制造0.7 nm原子层薄晶体管?

Why In2O3 Can Make 0.7 nm Atomic Layer Thin Transistors?

论文作者

Si, Mengwei, Hu, Yaoqiao, Lin, Zehao, Sun, Xing, Charnas, Adam, Zheng, Dongqi, Lyu, Xiao, Wang, Haiyan, Cho, Kyeongjae, Ye, Peide D.

论文摘要

在这项工作中,我们通过原子层沉积(ALD)无定形在2O3通道中展示了增强模式场效应晶体管,厚度降至0.7 nm。发现厚度对In2O3的材料和电子传输至关重要。在原子尺度上的In2O3的可控厚度可实现与常规介电集成的IN2O3通道中足够的2D载体密度的设计。发现阈值电压和通道载体密度通过通道厚度进行了大量调节。这种现象是通过陷阱中性水平(TNL)模型来理解的,其中费米级倾向于在In2O3的传导带内深度排列,并且可以调节原子层中的带量,这是由于量子限制效应而导致的,这是由密度函数理论(DFT)计算所证实的。增强模式在2O3晶体管中无定形的演示表明In2O3是一种竞争性通道材料,用于兼容的晶体管和整体式3D集成应用。

In this work, we demonstrate enhancement-mode field-effect transistors by atomic-layer-deposited (ALD) amorphous In2O3 channel with thickness down to 0.7 nm. Thickness is found to be critical on the materials and electron transport of In2O3. Controllable thickness of In2O3 at atomic scale enables the design of sufficient 2D carrier density in the In2O3 channel integrated with the conventional dielectric. The threshold voltage and channel carrier density are found to be considerably tuned by channel thickness. Such phenomenon is understood by the trap neutral level (TNL) model where the Fermi-level tends to align deeply inside the conduction band of In2O3 and can be modulated to the bandgap in atomic layer thin In2O3 due to quantum confinement effect, which is confirmed by density function theory (DFT) calculation. The demonstration of enhancement-mode amorphous In2O3 transistors suggests In2O3 is a competitive channel material for back-end-of-line (BEOL) compatible transistors and monolithic 3D integration applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源