论文标题
电阻MHD方程的熵稳定的淋巴结不连续的Galerkin方法。第二部分:子细胞有限卷捕获
An Entropy Stable Nodal Discontinuous Galerkin Method for the resistive MHD Equations. Part II: Subcell Finite Volume Shock Capturing
论文作者
论文摘要
该系列的第二篇论文提出了两种强大的熵稳定的冲击捕获方法,用于不连续的Galerkin光谱元件(DGSEM)离散的可压缩磁磁性 - 溶血动力学(MHD)方程。具体而言,我们使用电阻GLM-MHD方程,其中包括基于广义Lagrange乘数(GLM)的发散清洁机制。为了使连续的熵分析保持,并且由于对磁场的无差约束,GLM-MHD系统需要使用非保守术语,这需要特殊处理。 Hennemann等。 [doi:10.1016/j.jcp.2020.109935]最近提出了一种熵稳定的冲击策略,用于对Euler方程的DGSEM离散,该策略将DGSEM方案与子电池一阶有限体积(FV)方法融合在一起。我们的第一个贡献是Hennemann等人方法的扩展。对于具有非保守术语的系统,例如GLM-MHD方程。在我们的方法中,该方程的对流和非保守术语通过混合FV/DGSEM方案离散,而仅使用高阶DGSEM方法将抗Visco抗性项离散。我们证明,扩展方法是在三维非结构化曲线网格上熵稳定的。我们的第二个贡献是对第二个熵稳定的冲击捕获方法的推导和分析,该方法通过使用仔细构建以确保熵稳定性的子手术重建程序来提供增强的分辨率。 我们提供了曲面网格上混合FV/DGSEM方案的性质的数值验证,并通过常见的基准案例(例如Orszag-Tang Vortex和Gem Recenection挑战)显示出它们的稳健性和准确性。最后,我们模拟了一个空间物理应用:木星磁场与月球IO产生的等离子圆环的相互作用。
The second paper of this series presents two robust entropy stable shock-capturing methods for discontinuous Galerkin spectral element (DGSEM) discretizations of the compressible magneto-hydrodynamics (MHD) equations. Specifically, we use the resistive GLM-MHD equations, which include a divergence cleaning mechanism that is based on a generalized Lagrange multiplier (GLM). For the continuous entropy analysis to hold, and due to the divergence-free constraint on the magnetic field, the GLM-MHD system requires the use of non-conservative terms, which need special treatment. Hennemann et al. [DOI:10.1016/j.jcp.2020.109935] recently presented an entropy stable shock-capturing strategy for DGSEM discretizations of the Euler equations that blends the DGSEM scheme with a subcell first-order finite volume (FV) method. Our first contribution is the extension of the method of Hennemann et al. to systems with non-conservative terms, such as the GLM-MHD equations. In our approach, the advective and non-conservative terms of the equations are discretized with a hybrid FV/DGSEM scheme, whereas the visco-resistive terms are discretized only with the high-order DGSEM method. We prove that the extended method is entropy stable on three-dimensional unstructured curvilinear meshes. Our second contribution is the derivation and analysis of a second entropy stable shock-capturing method that provides enhanced resolution by using a subcell reconstruction procedure that is carefully built to ensure entropy stability. We provide a numerical verification of the properties of the hybrid FV/DGSEM schemes on curvilinear meshes and show their robustness and accuracy with common benchmark cases, such as the Orszag-Tang vortex and the GEM reconnection challenge. Finally, we simulate a space physics application: the interaction of Jupiter's magnetic field with the plasma torus generated by the moon Io.