论文标题
R_500以外的狂热生活:X射线视图与SRG/EROSITA的昏迷集群。 I. X射线形态,最近的合并和无线电光环连接
Tempestuous life beyond R_500: X-ray view on the Coma cluster with SRG/eROSITA. I. X-ray morphology, recent merger, and radio halo connection
论文作者
论文摘要
这是使用校准和性能验证观察中获得的SRG/EROSITA X射线数据对昏迷群集进行的第一篇论文。数据覆盖$ \ sim3^\ circ \ times 3^\ circ $ circ $区域周围的典型曝光时间超过20 k。在扫描模式下,SRG天文台的仪器背景和操作的稳定性为我们提供了一个出色的数据集,可研究从昏迷中心进行弥漫发射至$ \ sim 1.5R_ {200} $的距离。在这项研究中,我们讨论了X射线观察结果揭示的丰富形态(也与SZ数据结合使用),并认为最显着的特征可以自然地通过与NGC 4839组的最近(正在进行的)合并来解释。特别是,我们确定了一个淡淡的X射线桥,该桥与集群连接起来,这令人信服地证明了NGC 4839已经越过了主要群集。昏迷核心中的气体经历了两次冲击,首先是通过NGC 4839驱动的冲击,这是在GYR前的首次通过群集中,最近,通过与气体沉降到核心中的Quasi-Hydrydrstoratic平衡相关的“迷你抗气冲击”。经过一级冲击后,气体应大部分时间在稀疏区域,在稀疏区域,那里电子的辐射损失很小,直到微型酸化冲击再次压缩气体为止。与“跑道”合并冲击不同,微型精神冲击不会以下游的稀疏区域为特色,因此,无线电发射可以生存更长的时间。这样的两个阶段过程可能解释了昏迷集群中无线电光环的形成。
This is the first paper in a series of studies of the Coma cluster using the SRG/eROSITA X-ray data obtained in course of the Calibration and Performance Verification observations. The data cover $\sim3^\circ\times 3^\circ$ area around the cluster with a typical exposure time of more than 20 ks. The stability of the instrumental background and operation of the SRG Observatory in the scanning mode provided us with an excellent data set for studies of the diffuse emission up to a distance of $\sim 1.5R_{200}$ from the Coma center. In this study, we discuss the rich morphology revealed by the X-ray observations (also in combination with the SZ data) and argue that the most salient features can be naturally explained by a recent (on-going) merger with the NGC 4839 group. In particular, we identify a faint X-ray bridge connecting the group with the cluster, which is convincing proof that NGC 4839 has already crossed the main cluster. The gas in the Coma core went through two shocks, first through the shock driven by NGC 4839 during its first passage through the cluster some Gyr ago, and, more recently, through the "mini-accretion shock" associated with the gas settling back to quasi-hydrostatic equilibrium in the core. After passing through the primary shock, the gas should spend much of the time in a rarefaction region, where radiative losses of electrons are small, until the gas is compressed again by the mini-accretion shock. Unlike "runway" merger shocks, the mini-accretion shock does not feature a rarefaction region downstream and, therefore, the radio emission can survive longer. Such a two-stage process might explain the formation of the radio halo in the Coma cluster.