论文标题

通过增强的符号类别量化双重

Towards a quantization of the double via the enhanced symplectic category

论文作者

Crooks, Peter, Weitsman, Jonathan

论文摘要

本文考虑了增强的符号“类别”,目的是量化准哈米尔顿$ g $ - 空格,其中$ g $是一个紧凑的简单谎言组。我们的起点是汉密尔顿几何形状的cotangent束$ t^*g $之间的类似类比,而内部融合的double $ d(g)= g \ times g $ g \ times g $ in quasi-hamiltonian几何形状。 Guillemin和Sternberg考虑了前者,在其所谓的角色Lagrangians上进行了半浓度和相位功能,$λ_{\ Mathcal {o}} \ subseteq t^*g $。我们的准哈米尔顿同行将这些角色拉格朗日替换为通用中心化$λ_ {\ Mathcal {c}} \ longrightArrow \ Mathcal \ Mathcal {C of常规,$ \ frac {1} {1} {k} {k} {k} $ - Integral conjugacy类$ \ m artercal $ \ mathcal $ subsete $ subsete $ supsete $ supsete $ secseete c <c。我们向每个通用centralizer显示为$ d(g)$中的“准哈米顿拉格朗日”,并配备了半密度和相位功能。 同时,我们认为缺乏自然的哈密顿类似物的Dehn Twist引起的自动形态$ R:D(G)\ LongrightArrow D(G)$。每个Quasi-hamiltonian lagrangian $ r(λ_ {\ Mathcal {c}})$显示与每$λ_ {\ Mathcal {C}'} $具有干净的交点,并配备了其本身的半密度和相位功能。这导致我们考虑了bks配对的bks配对的良好行为,准黑米顿的概念的可能性(λ_ {\ mathcal {c}}})$和$λ_{\ Mathcal {c}'} $。我们构建了这样的配对并研究其特性。这是由$ r(λ_ {\ Mathcal {c}})\capλ_ {\ Mathcal {c}'} $的$ r(λ_ {\ Mathcal {c}})的良好几何恐惧和经典BKS配对的重新制作所促进的。我们的工作也许是通过增强的符号“类别”迈出$ d(g)$的级别$ k $量化的第一步。

This paper considers the enhanced symplectic "category" for purposes of quantizing quasi-Hamiltonian $G$-spaces, where $G$ is a compact simple Lie group. Our starting point is the well-acknowledged analogy between the cotangent bundle $T^*G$ in Hamiltonian geometry and the internally fused double $D(G)=G\times G$ in quasi-Hamiltonian geometry. Guillemin and Sternberg consider the former, studing half-densities and phase functions on its so-called character Lagrangians $Λ_{\mathcal{O}}\subseteq T^*G$. Our quasi-Hamiltonian counterpart replaces these character Lagrangians with the universal centralizers $Λ_{\mathcal{C}}\longrightarrow\mathcal{C}$ of regular, $\frac{1}{k}$-integral conjugacy classes $\mathcal{C}\subseteq G$. We show each universal centralizer to be a "quasi-Hamiltonian Lagrangian" in $D(G)$, and to come equipped with a half-density and phase function. At the same time, we consider a Dehn twist-induced automorphism $R:D(G)\longrightarrow D(G)$ that lacks a natural Hamiltonian analogue. Each quasi-Hamiltonian Lagrangian $R(Λ_{\mathcal{C}})$ is shown to have a clean intersection with every $Λ_{\mathcal{C}'}$, and to come equipped with a half-density and phase function of its own. This leads us to consider the possibility of a well-behaved, quasi-Hamiltonian notion of the BKS pairing between $R(Λ_{\mathcal{C}})$ and $Λ_{\mathcal{C}'}$. We construct such a pairing and study its properties. This is facilitated by the nice geometric fearures of $R(Λ_{\mathcal{C}})\capΛ_{\mathcal{C}'}$ and a reformulation of the classical BKS pairing. Our work is perhaps the first step towards a level-$k$ quantization of $D(G)$ via the enhanced symplectic "category".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源