论文标题
在分级谎言组上的乘数问题上
On the multiplier problem for the ball on graded Lie groups
论文作者
论文摘要
在本说明中,我们考虑了对球的经典Fefferman乘数问题的非交通类比。更确切地说,如果$χ$是单位间隔$ i = [0,1]的特征功能,则我们调查了分级谎言组$ g的差异操作员$ \ nathcal {r} $的家族,$ $ g,为此,乘数$χ(\ nathcal {r})$在$ l^p(g)$ p(g),如果是$ p = $ pc.
In this note, we consider a non-commutative analogy of the classical Fefferman multiplier problem for the ball. More precisely, if $χ$ is the characteristic function of the unit interval $I=[0,1],$ we investigate a family of differential operators $\mathcal{R}$ on a graded Lie group $G,$ for which the multipliers $χ(\mathcal{R})$ are bounded on $L^p(G),$ if and only if $p=2.$