论文标题
聚平面上霍尔态映射的表征
A characterization of holomorphic mappings on a poly-plane
论文作者
论文摘要
我们表明,任何函数$ f:\ mathbb {h}^n \ to \ mathbb {h} $带有$ f(z+c)= f(z)= f(z)+c $,$ z \ in \ mathbb {h}^n $,对于某些$ c> 0 $ \ {\ frac {f(tz)} {t} \} _ {t> 0} $当$ t \ to \ infty $是线性时。
We show that any function $f:\mathbb{H}^n\to\mathbb{H}$ with $f(z+c)=f(z)+c$, $z\in\mathbb{H}^n$, for some $c>0$ has a property that any limit function of a family $\{\frac{f(tz)}{t}\}_{t>0}$ when $t\to\infty$ is linear.