论文标题
具有孤立波的新模型:解决方案,稳定性和准模式
A new model with solitary waves: solution, stability and quasinormal modes
论文作者
论文摘要
我们以$ 1+1 $尺寸的无质量标量($ ϕ $)构建单一波浪解决方案,具有特殊选择的潜在$ V(ϕ)$。关于此孤立波的扰动的方程式具有有效的潜力,在一个区域上是一个简单的谐波,并且是一个恒定的范围。此功能使我们能够通过井中的结合状态确保孤立波的稳定性,这可以通过半分析方法找到。通过我们搜索用于纯粹传出边界条件的准正常模式(QNM),对稳定性进行了进一步检查。详细介绍并讨论了QNM值的扰动和参数变化的时域曲线。预计,通过我们对准正常模式的分析,可以清楚地看到波动的抑制振荡时间行为(响声)。
We construct solitary wave solutions in a $1+1$ dimensional massless scalar ($ϕ$) field theory with a specially chosen potential $V(ϕ)$. The equation governing perturbations about this solitary wave has an effective potential which is a simple harmonic well over a region, and a constant beyond. This feature allows us to ensure the stability of the solitary wave through the existence of bound states in the well, which can be found by semi-analytical methods. A further check on stability is performed through our search for quasi-normal modes (QNM) which are defined for purely outgoing boundary conditions. The time-domain profiles of the perturbations and the parametric variation of the QNM values are presented and discussed in some detail. Expectedly, a damped oscillatory temporal behaviour (ringdown) of the fluctuations is clearly seen through our analysis of the quasi-normal modes.