论文标题

内部连续性,连续到边界的连续性以及Harnack的双相椭圆方程的不平等

Interior continuity, continuity up to the boundary and Harnack's inequality for double-phase elliptic equations with non-logarithmic conditions

论文作者

Hadzhy, Oleksandr V., Skrypnik, Igor I., Voitovych, Mykhailo V.

论文摘要

我们证明了连续性和Harnack的不平等问题,用于对椭圆方程的有界解决方案的类型\ begin {aTigned} {\ rm div} \ big(| \ nabla U |^{p-2} \,\ nabla U+a(x) a(x)\ geqslant0,\\ | a(x)-a(y)| \ leqslant a | x-y |^αμ(| x-y |),&\ quad x \ neq y,\ neq y,\\ {\ rm div} \ big(| \ big [1+ \ ln(1+b(x)\,| \ nabla u |)\ big] \ big)= 0,&\ quad b(x)\ geqslant0,\\ | b(x)-b(x)-b(y)-b(y)| \ leqslant | \ leqslant b | x-y | \ | x-y | \ | \ y q y y q y y q y y | x y | x y | x y | x y | $ $ $ $ \ begin {Aligned} {\ rm div} \ big(| \ nabla u |^{p-2} \,\ nabla u+c(x)| \ nabla U |^{q-2} {q-2} \ \ nabla u \ nabla u \ big big [1+\ ln(1+\ ln(1+) \ quad c(x)\ geqslant0,\,β\ geqslant0,\ phantom {= 0 = 0 = 0} $μ$。

We prove continuity and Harnack's inequality for bounded solutions to elliptic equations of the type $$ \begin{aligned} {\rm div}\big(|\nabla u|^{p-2}\,\nabla u+a(x)|\nabla u|^{q-2}\,\nabla u\big)=0,& \quad a(x)\geqslant0, \\ |a(x)-a(y)|\leqslant A|x-y|^αμ(|x-y|),& \quad x\neq y, \\ {\rm div}\Big(|\nabla u|^{p-2}\,\nabla u \big[1+\ln(1+b(x)\, |\nabla u|) \big] \Big)=0,& \quad b(x)\geqslant0, \\ |b(x)-b(y)|\leqslant B|x-y|\,μ(|x-y|),& \quad x\neq y, \end{aligned} $$ $$ \begin{aligned} {\rm div}\Big(|\nabla u|^{p-2}\,\nabla u+ c(x)|\nabla u|^{q-2}\,\nabla u \big[1+\ln(1+|\nabla u|) \big]^β \Big)=0,& \quad c(x)\geqslant0, \, β\geqslant0,\phantom{=0=0} \\ |c(x)-c(y)|\leqslant C|x-y|^{q-p}\,μ(|x-y|),& \quad x\neq y, \end{aligned} $$ under the precise choice of $μ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源