论文标题
从循环量子宇宙学中的物质 - ekpyrotot弹跳场景中的原始功率谱
Primordial power spectrum from a matter-Ekpyrotic bounce scenario in loop quantum cosmology
论文作者
论文摘要
经常研究物质反弹和ekpyrotic场景的结合,以结合这两种模型的最有希望的特征。由于循环量子宇宙学(LQC)中的非扰动量子几何效应会导致自然弹跳场景而不会违反能量条件或微调,因此在此量子重力环境中探索了物质 - 卵性弹力弹跳方案。在这项工作中,我们探索了这种统一的现象学模型,用于在LQC中的空间平坦的Friedmann-Lema-Robertson-Walker(FLRW)宇宙,充满了灰尘和标量场,例如负面潜力。通过各种初始条件和适当的初始状态选择,对曲率扰动的背景动力学和功率谱进行数值分析。通过改变初始条件,我们考虑了在收缩阶段的灰尘和ekpyrotic场统治的不同情况。我们使用穿着的度量方法来计算com曲线扰动的原始功率谱,对于在物质主导的阶段中退出地平线的模式而言,这几乎是规模不变的。但是,与在早期工作中使用变形代数方法在恒定的ekpyration方程中获得的恒定幅度功率谱相反,我们发现在进化过程中,功率谱的幅度变化。我们的分析表明,弹跳制度仅在规模不变制度之外的模式上留下烙印。但是,对光谱指数的分析显示与观察数据的不一致,从而在必要的模型中进一步改进。
A union of matter bounce and Ekpyrotic scenarios is often studied in an attempt to combine the most promising features of these two models. Since non-perturbative quantum geometric effects in loop quantum cosmology (LQC) result in natural bouncing scenarios without any violation of energy conditions or fine tuning, an investigation of matter-Ekpyrotic bounce scenario is interesting to explore in this quantum gravitational setting. In this work, we explore this unified phenomenological model for a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe in LQC filled with dust and a scalar field in an Ekpyrotic scenario like negative potential. Background dynamics and the power spectrum of the comoving curvature perturbations are numerically analyzed with various initial conditions and a suitable choice of the initial states. By varying the initial conditions we consider different cases of dust and Ekpyrotic field domination in the contracting phase. We use the dressed metric approach to numerically compute the primordial power spectrum of the comoving curvature perturbations which turns out to be almost scale invariant for the modes which exit the horizon in the matter-dominated phase. But, in contrast with a constant magnitude power spectrum obtained under approximation of a constant Ekpyrotic equation of state using deformed algebra approach in an earlier work, we find that the magnitude of power spectrum changes during evolution. Our analysis shows that the bouncing regime only leaves imprints on the modes outside the scale-invariant regime. However, an analysis of the spectral index shows inconsistency with the observational data, thus making further improvements in such a model necessary.