论文标题

A型Gaudin代数,RSK和Calogero-Moser细胞

Gaudin Algebras, RSK and Calogero-Moser Cells in Type A

论文作者

Brochier, Adrien, Gordon, Iain, White, Noah

论文摘要

我们研究了代数家族,不均匀的高丁代数的频谱,作用于$ n $折叠量表示$ \ Mathbb {c} [x_1,\ ldots,x_r]^{\ otimes^{\ otimes N} $我们使用Halacheva-Kamnitzer-Rybnikov周的工作来证明Robinson-Schensted-Knuth对应关系描述了当我们沿着家族的特殊路径移动时,频谱的行为。我们应用了Mukhin-Tarasov-Varchenko的工作,该作品证明,可以将理性的Calogero-Moser相位空间作为此频谱的一部分实现,以将其与$ T = 0 $ t = 0 $ t = 0 $的行为相关联,$ \ m athfrak {s} _n $ $ \ mathfrak {s} _n $。结果,我们为对称组确认了Bonnafé-Rouquier的猜想,该猜想提出了他们定义的Calogero-Moser细胞与众所周知的Kazhdan-Lusztig细胞之间的平等性。

We study the spectrum of a family of algebras, the inhomogeneous Gaudin algebras, acting on the $n$-fold tensor representation $\mathbb{C}[x_1, \ldots, x_r]^{\otimes n}$ of the Lie algebra $\mathfrak{gl}_r$. We use the work of Halacheva-Kamnitzer-Rybnikov-Weekes to demonstrate that the Robinson-Schensted-Knuth correspondence describes the behaviour of the spectrum as we move along special paths in the family. We apply the work of Mukhin-Tarasov-Varchenko, which proves that the rational Calogero-Moser phase space can be realised as a part of this spectrum, to relate this to behaviour at $t=0$ of rational Cherednik algebras of $\mathfrak{S}_n$. As a result, we confirm for symmetric groups a conjecture of Bonnafé-Rouquier which proposes an equality between the Calogero-Moser cells they defined and the well-known Kazhdan-Lusztig cells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源