论文标题

部分可观测时空混沌系统的无模型预测

Stable Implementation of Probabilistic ODE Solvers

论文作者

Krämer, Nicholas, Hennig, Philipp

论文摘要

普通微分方程(ODE)的概率求解器提供了与动态系统模拟相关的数值不确定性的有效量化。他们的收敛速率已经通过越来越多的理论分析建立。但是,这些算法在高阶或较小的台阶尺寸运行时会遭受数值的不稳定性,也就是说,正是在其达到最高精度的状态下。目前的工作提出并研究了解决此问题的解决方案。它涉及三个组成部分:准确的初始化,坐标更改预处理,使数值稳定性涉及阶梯大小独立于依赖于阶梯尺寸的实现。如在一组具有挑战性的测试问题上所证明的那样,使用所有三种技术都可以用ODE算法的ODE概率解决方案进行数值计算。所产生的快速收敛显示与高阶,最先进的经典方法具有竞争力。结果,分析概率探测器与将它们应用于有趣的机器学习问题之间的障碍已被有效消除。

Probabilistic solvers for ordinary differential equations (ODEs) provide efficient quantification of numerical uncertainty associated with simulation of dynamical systems. Their convergence rates have been established by a growing body of theoretical analysis. However, these algorithms suffer from numerical instability when run at high order or with small step-sizes -- that is, exactly in the regime in which they achieve the highest accuracy. The present work proposes and examines a solution to this problem. It involves three components: accurate initialisation, a coordinate change preconditioner that makes numerical stability concerns step-size-independent, and square-root implementation. Using all three techniques enables numerical computation of probabilistic solutions of ODEs with algorithms of order up to 11, as demonstrated on a set of challenging test problems. The resulting rapid convergence is shown to be competitive to high-order, state-of-the-art, classical methods. As a consequence, a barrier between analysing probabilistic ODE solvers and applying them to interesting machine learning problems is effectively removed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源