论文标题
雅各布的梯子是新类迭代$ l_2 $ - 正交系统的生成器及其对Riemann功能的依赖
Jacob's ladder as generator of new class of iterated $L_2$-orthogonal systems and their dependence on the Riemann's function
论文作者
论文摘要
在本文中,$ L_2 $ - 正交功能的新类是迭代$ L_2 $ - 正交系统。为此,我们使用Riemann的Zeta功能理论以及雅各布的梯子理论。主要的结果是在Riemann的Zeta功能理论中,并同时在$ L_2 $ - 正交系统的理论中。
In this paper new classes of $L_2$-orthogonal functions are constructed as iterated $L_2$-orthogonal systems. In order to do this we use the theory of the Riemann's zeta-function as well as our theory of Jacob's ladders. The main result is new one in the theory of the Riemann's zeta-function and simultaneously in the theory of $L_2$-orthogonal systems.