论文标题

Yau和Souplet-Zhang类型梯度估计在Riemannian歧管上,边界在dirichlet边界条件下

Yau and Souplet-Zhang type gradient estimates on Riemannian manifolds with boundary under Dirichlet boundary condition

论文作者

Kunikawa, Keita, Sakurai, Yohei

论文摘要

在本文中,在带有边界的Riemannian歧管上,我们建立了YAU类型梯度估计值,并在Dirichlet边界条件下建立了谐波函数的Liouville定理。在类似的环境下,我们还制定了souplet-zhang型梯度​​估计值,而liouville定理则用于对热方程式的古代解决方案。

In this paper, on Riemannian manifolds with boundary, we establish a Yau type gradient estimate and Liouville theorem for harmonic functions under Dirichlet boundary condition. Under a similar setting, we also formulate a Souplet-Zhang type gradient estimate and Liouville theorem for ancient solutions to the heat equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源