论文标题

在回答多个差异私人查询时避免工会绑定时

On Avoiding the Union Bound When Answering Multiple Differentially Private Queries

论文作者

Ghazi, Badih, Kumar, Ravi, Manurangsi, Pasin

论文摘要

在这项工作中,我们研究了用$(ε,δ)$ - 差异隐私回答$ k $ Queries的问题,每个查询都具有敏感性。我们为此任务提供了一种算法,该算法实现了$ O(\ frac {1}ε\ sqrt {k \ log \ frac {1}Δ})$的预期$ \ ell_ \ infty $误差绑定,已知很紧张(Steinke and Ullman,2016)。 Dagan和Kur(2020)最近的一项工作提供了类似的结果,尽管通过完全不同的方法。我们的工作和他们的工作之间的一个区别是,即使$Δ<2^{ - ω(k/(\ log k)^8)} $即使在这种情况下不适用。另一方面,达根(Dagan)和库尔(Kur)的算法具有显着的优势:$ \ ell _ {\ infty} $错误的限制为$ o(\ frac {1} {1}ε\ sqrt {k \ log \ log \ log \ frac {1}δ}δ}Δ} $不仅可以肯定,但始终可以(始终可以)(everence a Probitie a Probity a Probitie a Probity a Probity a Probity a Probity a Probity a Probity a light(ey.e.e.e.e.e.e.e.e),或者是一定的(或者),或者是一定的(或者)。错误。

In this work, we study the problem of answering $k$ queries with $(ε, δ)$-differential privacy, where each query has sensitivity one. We give an algorithm for this task that achieves an expected $\ell_\infty$ error bound of $O(\frac{1}ε\sqrt{k \log \frac{1}δ})$, which is known to be tight (Steinke and Ullman, 2016). A very recent work by Dagan and Kur (2020) provides a similar result, albeit via a completely different approach. One difference between our work and theirs is that our guarantee holds even when $δ< 2^{-Ω(k/(\log k)^8)}$ whereas theirs does not apply in this case. On the other hand, the algorithm of Dagan and Kur has a remarkable advantage that the $\ell_{\infty}$ error bound of $O(\frac{1}ε\sqrt{k \log \frac{1}δ})$ holds not only in expectation but always (i.e., with probability one) while we can only get a high probability (or expected) guarantee on the error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源