论文标题

一种非二元测量的可拖动的非适应性组测试方法

A tractable non-adaptative group testing method for non-binary measurements

论文作者

Joly, Emilien, Mallein, Bastien

论文摘要

小组测试的原始问题在于,通过对检测到该组中至少有一个有缺陷项目的物品的组应用测试来识别集合中有缺陷的项目。然后,目的是用尽可能少的测试确定收集的所有有缺陷的项目。这个问题与几个领域有关,其中包括生物学和计算机科学。在本文中,我们认为适用于项目组的测试返回\ emph {load},以衡量组中最有缺陷的项目的有缺陷。在这种情况下,我们提出了一种简单的非适应性算法,允许检测集合的所有有缺陷的项目。此方法仅使用测试的二进制响应来改进经典组测试算法。 最近的小组测试获得了吸引人的吸引力,作为解决COVID-19测试试剂盒短缺的潜在工具,特别是对于RT-QPCR。这些测试返回样品的病毒载荷,病毒负荷在个体之间变化很大。因此,我们的模型介绍了此问题的一些关键特征。我们旨在使用代表病毒载荷的额外信息来构建此理想化版本上的单阶段测试算法。我们表明,在适当的条件下,检测被污染样品所需的测试总数可能会大大减少。

The original problem of group testing consists in the identification of defective items in a collection, by applying tests on groups of items that detect the presence of at least one defective item in the group. The aim is then to identify all defective items of the collection with as few tests as possible. This problem is relevant in several fields, among which biology and computer sciences. In the present article we consider that the tests applied to groups of items returns a \emph{load}, measuring how defective the most defective item of the group is. In this setting, we propose a simple non-adaptative algorithm allowing the detection of all defective items of the collection. This method improves on classical group testing algorithms using only the binary response of the test. Group testing recently gained attraction as a potential tool to solve a shortage of COVID-19 test kits, in particular for RT-qPCR. These tests return the viral load of the sample and the viral load varies greatly among individuals. Therefore our model presents some of the key features of this problem. We aim at using the extra piece of information that represents the viral load to construct a one-stage pool testing algorithm on this idealized version. We show that under the right conditions, the total number of tests needed to detect contaminated samples can be drastically diminished.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源