论文标题
支撑$ \ mathbb {z} _3 $和$ \ mathbb {z} _4 $ Parafermions的$ \ mathbb {z} _3 $ \ mathbb {z} _3 $ \ mathbb {z}
Insulating regime of an underdamped current-biased Josephson junction supporting $\mathbb{Z}_3$ and $\mathbb{Z}_4$ parafermions
论文作者
论文摘要
我们分析研究了当前偏见的拓扑约瑟夫森连接,支持$ \ mathbb {z} _n $ parafermions。首先,我们表明,在一个无限大小的系统中,连接处的一对偏心可能处于$ n $不同的状态; $2π{n} $周期性的相位电位的周期性可显着抑制最大当前$ i_m $,以造成失水不足的交界处的绝缘状态。其次,我们研究了一个逼真的有限大小系统的行为,其避免级别的交叉点为特征,其特征是分裂$δ$。我们考虑两种限制情况:当相位进化被认为是绝热时,这会导致有效潜力的周期性下降,而相反的情况,当Landau-Zener转换恢复了$2π{n} $的周期性。所得的当前$ i_m $在相反的限制上是指数级的,这使我们能够提出一种新的检测方法,以实验中在系统中建立偏执量的外观,基于在划分$Δ$的不同值下测量$ i_m $。
We study analytically a current-biased topological Josephson junction supporting $\mathbb{Z}_n$ parafermions. First, we show that in an infinite-size system a pair of parafermions on the junction can be in $n$ different states; the $2π{n}$ periodicity of the phase potential of the junction results in a significant suppression of the maximal current $I_m$ for an insulating regime of the underdamped junction. Second, we study the behaviour of a realistic finite-size system with avoided level crossings characterized by splitting $δ$. We consider two limiting cases: when the phase evolution may be considered adiabatic, which results in decreased periodicity of the effective potential, and the opposite case, when Landau-Zener transitions restore the $2π{n}$ periodicity of the phase potential. The resulting current $I_m$ is exponentially different in the opposite limits, which allows us to propose a new detection method to establish the appearance of parafermions in the system experimentally, based on measuring $I_m$ at different values of the splitting $δ$.