论文标题
电场计算和PNS头和身体梯度线圈的预测
Electric Field Calculation and PNS Prediction for Head and Body Gradient Coils
论文作者
论文摘要
目的:证明和验证电子场计算和PNS预测方法,这些方法是准确,计算上有效的,并且可以用于为监管标准提供信息。方法:我们描述了一种简化的方法,用于计算呈梯度线圈矢量电位场的体积上诱导电子场的空间分布。该方法在没有有限元或有限差分软件的情况下很容易编程,从而可以直接且计算高效的电子场地评估。使用这些电子场计算和一系列身体模型,使用已建立的方法确定种群加权的PNS阈值,并与两个头部梯度线圈和一个身体梯度线圈进行比较。结果:通过荟萃分析确定了669US的头部梯度的较高的计时值。我们计算出的PNS参数和相应的实验测量值之间的预测误差约为5%,对称头部梯度的预测误差约为20%。我们计算出的PNS参数将实验测量与实验不确定性相匹配,占Deltagmin估计值的73%和SRMIN估计值的80%。计算时间是针对不同梯度设计的E-Field更新的初始电子场图和毫秒的秒数,从而可以对梯度设计进行高效的迭代优化,并在PNS-最佳梯度设计中实现新的尺寸。结论:我们已经开发了准确和计算上有效的方法,用于确定PNS限制,并在头部梯度线圈上进行了特定的应用。
Purpose: To demonstrate and validate E-field calculation and PNS prediction methods that are accurate, computationally efficient and that could be used to inform regulatory standards. Methods: We describe a simplified method for calculating the spatial distribution of induced E-field over the volume of a body model given a gradient coil vector potential field. The method is easily programmed without finite element or finite difference software, allowing for straightforward and computationally-efficient E-field evaluation. Using these E-field calculations and a range of body models, population-weighted PNS thresholds are determined using established methods and compared against published experimental PNS data for two head gradient coils and one body gradient coil. Results: A head-gradient-appropriate chronaxie value of 669us was determined by meta-analysis. Prediction errors between our calculated PNS parameters and the corresponding experimentally measured values were ~5% for the body gradient and ~20% for the symmetric head gradient. Our calculated PNS parameters matched experimental measurements to within experimental uncertainty for 73% of deltaGmin estimates and 80% of SRmin estimates. Computation time is seconds for initial E-field maps and milliseconds for E-field updates for different gradient designs, allowing for highly efficient iterative optimization of gradient designs and enabling new dimensions in PNS-optimal gradient design. Conclusions: We have developed accurate and computationally efficient methods for prospectively determining PNS limits, with specific application to head gradient coils.