论文标题
加速黑洞和旋转纺锤
Accelerating Black Holes and Spinning Spindles
论文作者
论文摘要
我们研究了Plebański-Demiański家族的解决方案,该家庭描述了$ ads_4 $中的加速,旋转和横向充电的黑洞。这些是$ d = 4 $ Einstein-Maxwell理论的解决方案,具有负宇宙常数,因此最小$ d = 4 $衡量的超级重力。众所周知,当加速度不变时,$ d = 4 $的黑洞指标具有圆锥形奇异性。通过使用常规的Sasaki-Einstein $ 7 $ -MANIFOLD,$ SE_7 $将解决方案提升到$ d = 11 $ Supergravity,我们可以显示如何选择免费参数以消除锥形奇异性。从拓扑上讲,$ d = 11 $ solutions在二维加权的投影空间中结合了$ SE_7 $纤维,$ \ mathbb {wcp}^1 _ {[[n _--,n _-,n _+]} $,也被称为纺锤体,由两个整体标记,这些整体被确定$ $ n $ n $ netric n $ netric n $ nek n $ nekrics。我们还讨论了超对称性和极端极限,并表明近地平线限制产生了一个新的常规超对称性$ ads_2 \ times y_9 $ d = 11 $ d = 11 $ supergravity的家族,该解决方案通过添加旋转参数而概括了一个已知家庭。我们计算了这些黑洞的熵,并认为应该从某些$ {\ cal n} = 2 $,$ d = 3 $ Quiver仪表理论从具有适当磁性通量的旋转纺锤体上压实。
We study solutions in the Plebański--Demiański family which describe an accelerating, rotating and dyonically charged black hole in $AdS_4$. These are solutions of $D=4$ Einstein-Maxwell theory with a negative cosmological constant and hence minimal $D=4$ gauged supergravity. It is well known that when the acceleration is non-vanishing the $D=4$ black hole metrics have conical singularities. By uplifting the solutions to $D=11$ supergravity using a regular Sasaki-Einstein $7$-manifold, $SE_7$, we show how the free parameters can be chosen to eliminate the conical singularities. Topologically, the $D=11$ solutions incorporate an $SE_7$ fibration over a two-dimensional weighted projective space, $\mathbb{WCP}^1_{[n_-,n_+]}$, also known as a spindle, which is labelled by two integers that determine the conical singularities of the $D=4$ metrics. We also discuss the supersymmetric and extremal limit and show that the near horizon limit gives rise to a new family of regular supersymmetric $AdS_2\times Y_9$ solutions of $D=11$ supergravity, which generalise a known family by the addition of a rotation parameter. We calculate the entropy of these black holes and argue that it should be possible to derive this from certain ${\cal N}=2$, $d=3$ quiver gauge theories compactified on a spinning spindle with appropriate magnetic flux.