论文标题
D1-D5 SCFT中的R-Neutral Ramond田地的动力学
Dynamics of R-neutral Ramond fields in the D1-D5 SCFT
论文作者
论文摘要
我们描述了$ \ cal n =(4,4)$ super-Congrongal $(t^4)^n /s_n $ orbifold理论对R-neutral Twisted Ramond Fields的双重组的边际变形的效果。我们对他们的动力学的分析探讨了零属四点函数的显式分析形式,涉及两个R-Neutral Ramond场和两个变形算子。我们使用两种不同的方法来计算这种相关函数:lunin-Mathur路径综合技术和应力调整方法。从其短距离限制中,我们提取OPE结构常数和融合中出现的非BPS场的缩放尺寸。在变形的CFT中,在变形参数中以二阶为二阶,$ n $ twisted的Ramond Fields的两点函数是UV-Divergent。我们进行了适当的正则化,并对未塑造的字段进行了重新归一化,以$ n <n $获得有限的,定义明确的校正和其两点函数和裸露的保量。具有最大扭曲$ n = n $的磁场仍然可以保护重新归一化,并消失了异常。
We describe the effect of the marginal deformation of the $\cal N = (4, 4)$ superconformal $(T^4)^N /S_N$ orbifold theory on a doublet of R-neutral twisted Ramond fields, in the large-$N$ approximation. Our analysis of their dynamics explores the explicit analytic form of the genus-zero four-point function involving two R-neutral Ramond fields and two deformation operators. We compute this correlation function with two different approaches: the Lunin-Mathur path-integral technique and the stress-tensor method. From its short distance limits, we extract the OPE structure constants and the scaling dimensions of non-BPS fields appearing in the fusion. In the deformed CFT, at second order in the deformation parameter, the two-point function of the $n$-twisted Ramond fields is UV-divergent. We perform an appropriate regularization, together with a renormalization of the undeformed fields, obtaining finite, well-defined corrections to their two-point functions and their bare conformal weights, for $n < N$. The fields with maximal twist $n=N$ remain protected from renormalization, with vanishing anomalous dimensions.