论文标题

液化系数的无限线性方程组:可能的新上和下限

Infinite set of non linear Equations for the Li- Keiper Coefficients: a possible new upper and lower bound

论文作者

Danilo, Merlini, Massimo, Sala, Nicoletta, Sala

论文摘要

从液光系数的无限线性方程组开始,我们首先指定从无限集中出现的下限,并给出其表征。然后,我们在以非线性方式提供的群集函数中出现的少数分区中的系数中可能提出了一个可能的新上限和下限。最高n = 15的数值实验证实了拟议的边界和实验,即在整数的二进制表示中计数与glaisher-kinkelin常数的二进制代表中的计数,也可以给出n = 32。

Starting with an infinite set of non linear Equations for the Li-Keiper coefficients, we first specify a lower bound emerging from the infinite set and give a characterization of it. Then, we propose a possible new upper and lower bound for the coefficients in few of the partitions occurring in the cluster functions furnishing in a nonlinear way the coefficients. A numerical experiment up to n=15 confirms the proposed bounds and an experiment, i.e. the counting of the zeros in the binary representation of an integer for a constant related to the Glaisher-Kinkelin constant is also given up to n=32.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源