论文标题
Laplacian代数的最大性,并应用于不变理论
Maximality of Laplacian Algebras, with Applications to Invariant Theory
论文作者
论文摘要
我们显示拉普拉斯代数是最大的,并将紧凑型群体的真实正交表示的经典不变理论应用,包括:有限群体的反向不变理论问题的解决方案。如果分离集合设置为生成集,则仅使用标准。并引入一类广义极化,在某些类别的表示(包括有限群体的所有表示)中,它们总是会产生其对角线表示的代数。
We show Laplacian algebras are maximal, and give applications to the Classical Invariant Theory of real orthogonal representations of compact groups, including: The solution of the Inverse Invariant Theory problem for finite groups. An if-and-only-if criterion for when a separating set is a generating set. And the introduction of a class of generalized polarizations which, in a certain class of representations (including all representations of finite groups), always generates the algebra of invariants of their diagonal representations.