论文标题

在未知占用网格图中多个机器人的反应性时间逻辑计划

Reactive Temporal Logic Planning for Multiple Robots in Unknown Occupancy Grid Maps

论文作者

Kantaros, Yiannis, Malencia, Matthew, Pappas, George J.

论文摘要

本文提出了一种新的反应性时间逻辑计划算法,适用于多个机器人,这些机器人在使用占用网格图建模的未知几何形状中运行。这些机器人配备了单个传感器,可让他们使用现有的同时定位和映射(SLAM)方法不知名地学习未知环境的网格图。机器人的目的是完成由全球线性时间逻辑(LTL)公式捕获的复杂协作任务。现有的大多数LTL计划方法都取决于在已知环境中运行的机器人动力学的离散抽象,因此,它们不能应用于最初未知环境的更现实的场景。在本文中,我们通过提出第一个反应性,无抽象和分布式LTL计划算法来应对这一新颖挑战,该算法可用于在未知环境中运行的多个机器人的复杂任务计划。提出的算法是反应性的,即计划正在适应更新的环境图和无抽象,因为它不依赖于设计机器人动力学的抽象。同样,我们的算法是从全局LTL任务分解为基于连续学习的映射在线构建的单项可及性问题的意义上分发的。在对环境结构和传感器模型结构的温和假设下,所提出的算法是完整的。我们提供了广泛的数值模拟和硬件实验,以说明理论分析,并表明所提出的算法可以解决未知环境中大型多机器人系统的复杂计划任务。

This paper proposes a new reactive temporal logic planning algorithm for multiple robots that operate in environments with unknown geometry modeled using occupancy grid maps. The robots are equipped with individual sensors that allow them to continuously learn a grid map of the unknown environment using existing Simultaneous Localization and Mapping (SLAM) methods. The goal of the robots is to accomplish complex collaborative tasks, captured by global Linear Temporal Logic (LTL) formulas. The majority of existing LTL planning approaches rely on discrete abstractions of the robot dynamics operating in known environments and, as a result, they cannot be applied to the more realistic scenarios where the environment is initially unknown. In this paper, we address this novel challenge by proposing the first reactive, abstraction-free, and distributed LTL planning algorithm that can be applied for complex mission planning of multiple robots operating in unknown environments. The proposed algorithm is reactive, i.e., planning is adapting to the updated environmental map and abstraction-free as it does not rely on designing abstractions of the robot dynamics. Also, our algorithm is distributed in the sense that the global LTL task is decomposed into single-agent reachability problems constructed online based on the continuously learned map. The proposed algorithm is complete under mild assumptions on the structure of the environment and the sensor models. We provide extensive numerical simulations and hardware experiments that illustrate the theoretical analysis and show that the proposed algorithm can address complex planning tasks for large-scale multi-robot systems in unknown environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源