论文标题

在莫比乌斯平面的入射图的度量方面

On the metric dimension of incidence graph of Möbius planes

论文作者

Beke, Ákos

论文摘要

我们研究了möbius平面的点圈入射率图的度量尺寸和最佳分裂分解集。我们证明,订单$ Q $的Möbius平面的度量尺寸约为$ 2Q $,并且最佳的分配分辨率集的基数约为$ 5Q $ $ 5Q $和2.5q \ log log Q $。我们还证明,订单$ Q $的Möbius平面最小的封锁集最多为$ 2Q(1 + \ log(q + 1))$。

We study the metric dimension and optimal split-resolving sets of the point-circle incidence graph of a Möbius plane. We prove that the metric dimension of a Möbius plane of order $q$ is around $2q$, and that an optimal split-resolving set has cardinality between approximately $5q$ and $2.5q\log q$. We also prove that a smallest blocking set of a Möbius plane of order $q$ has at most $2q(1 + \log(q + 1))$ points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源