论文标题

从物理实验中学习,使用量子计算机:在MUON光谱中的应用

Learning from physics experiments, with quantum computers: Applications in muon spectroscopy

论文作者

McArdle, Sam

论文摘要

计算物理学是分析,验证和有时替换物理实验的重要工具。然而,到目前为止,模拟量子系统和分析量子数据已经抵抗了有效的经典治疗。尽管已经开发了可编程量子系统来应对这一挑战,但经典问题所需的资源仍然超出了我们的影响力。在这项工作中,我们考虑了量子模拟算法的新目标。分析物理实验引起的数据 - 特别是若子光谱实验。这些实验可用于探测冷凝物质系统中存在的量子相互作用。但是,对其结果进行充分分析可能需要使用模拟系统大小呈指数级的经典计算资源,这可能会限制我们对研究系统的理解。我们表明,这项任务可能是未来几代量子计算机的自然契合度。我们将量子算法的经典仿真在多达29个QUBIT的系统上分析实际实验数据,并估算我们的建议所需的近期和错误校正资源。我们发现我们的算法表现出良好的噪声弹性,这是由于我们希望从拟合曲线中提取全局参数的愿望,而不是针对任何单个数据点。在某些方面,我们的资源估计值比量子模拟中的一些先前工作要远得多,这是通过估计解决完整任务所需的资源,而不仅仅是运行给定电路所需的资源。考虑到可观察到的测量并计算多个数据点的开销,我们发现,如果我们的算法成为分析MUON光谱数据的实用性,仍然存在重大挑战。

Computational physics is an important tool for analysing, verifying, and -- at times -- replacing physical experiments. Nevertheless, simulating quantum systems and analysing quantum data has so far resisted an efficient classical treatment in full generality. While programmable quantum systems have been developed to address this challenge, the resources required for classically intractable problems still lie beyond our reach. In this work, we consider a new target for quantum simulation algorithms; analysing the data arising from physics experiments -- specifically, muon spectroscopy experiments. These experiments can be used to probe the quantum interactions present in condensed matter systems. However, fully analysing their results can require classical computational resources scaling exponentially with the simulated system size, which can limit our understanding of the studied system. We show that this task may be a natural fit for the coming generations of quantum computers. We use classical emulations of our quantum algorithm on systems of up to 29 qubits to analyse real experimental data, and to estimate both the near-term and error corrected resources required for our proposal. We find that our algorithm exhibits good noise resilience, stemming from our desire to extract global parameters from a fitted curve, rather than targeting any individual data point. In some respects, our resource estimates go further than some prior work in quantum simulation, by estimating the resources required to solve a complete task, rather than just to run a given circuit. Taking the overhead of observable measurement and calculating multiple datapoints into account, we find that significant challenges still remain if our algorithm is to become practical for analysing muon spectroscopy data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源