论文标题

Riemann Zeta功能的非平凡零的分析复发公式

Analytical recurrence formulas for non-trivial zeros of the Riemann zeta function

论文作者

Kawalec, Artur

论文摘要

在本文中,我们开发了四种类型的分析复发公式,用于假设(RH)在临界线上的Riemann Zeta函数的非平凡零。因此,为了生成$ n $ th+1的非平凡零,必须知道所有直至$ n $ th订单的零零。所有提出的公式均基于次级Zeta函数家族的某些闭合形式表示,这些Zeta函数家族已经在文献中可用。我们还提出了一个直接从素数生成非平凡零的公式。因此,所有素数都可以转换为单个的非平凡零,我们还提供了一组公式,将所有非平凡的零转换为单个素数。我们还将提出的结果扩展到其他Dirichlet-L函数,特别是,我们为Dirichlet Beta函数的非平凡零开发了一个分析复发公式。在本文中,我们还从数值上计算出这些公式的高精度,并回顾了计算的结果。

In this article, we develop four types of analytical recurrence formulas for non-trivial zeros of the Riemann zeta function on critical line assuming (RH). Thus, all non-trivial zeros up to the $n$th order must be known in order to generate the $n$th+1 non-trivial zero. All the presented formulas are based on certain closed-form representations of the secondary zeta function family, which are already available in the literature. We also present a formula to generate the non-trivial zeros directly from primes. Thus all primes can be converted into an individual non-trivial zero, and we also give a set of formulas to convert all non-trivial zeros into an individual prime. We also extend the presented results to other Dirichlet-L functions, and in particular, we develop an analytical recurrence formula for non-trivial zeros of the Dirichlet beta function. Throughout this article, we also numerically compute these formulas to high precision for various test cases and review the computed results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源