论文标题
关于贝特曼和钻石的猜想的注意,剩余的malliavin型抽象的pnt
Note on a conjecture of Bateman and Diamond concerning the abstract PNT with Malliavin-type remainder
论文作者
论文摘要
给定的$β\在(0,1)$中,我们显示了一个beurling通用数字系统的存在,其整数计数满足$ n(x)= ax + o \ bigl(x \ exp(-c \ log^βx x x)\ bigr)$,对于某些$ a> 0 $ a> 0 $ c> 0 $,其prime Counting untun unly unter Counting Function unly且满足$ functies $ $ functies $ $ functies $ functies $ functies $ functies $ funcy(x) ω\ bigl(x \ exp(-c'(\ log x)^{\fracβ{β+1}}})\ bigr)\ bigr)$ bigr)$)$ c'> 0 $。这是通过概括钻石,蒙哥马利和Vorhauer的结构来完成的。这种Beurling系统是1969年以来对Bateman和Diamond的猜想的额外动机,涉及Malliavin型的剩余时间。
Given $β\in(0,1)$, we show the existence of a Beurling generalized number system whose integer counting satisfies $N(x) = ax + O\bigl(x\exp(-c\log^β x)\bigr)$ for some $a>0$ and $c>0$, and whose prime counting function satisfies $π(x) = \mathrm{Li}(x) + Ω\bigl(x\exp(-c'(\log x)^{\fracβ{β+1}})\bigr)$ for some $c'>0$. This is done by generalizing a construction of Diamond, Montgomery, and Vorhauer. This Beurling system serves as additional motivation for a conjecture of Bateman and Diamond from 1969, concerning the PNT with Malliavin-type remainder.