论文标题
自由级毕业生问题问题的平行切口算法
A parallel cut-cell algorithm for the free-boundary Grad-Shafranov problem
论文作者
论文摘要
描述了一种平行的切口算法来解决毕业生方程的自由界问题。算法在一个不规则的界面域及其重要方面重新制定了自由结构的问题,包括搜索磁轴和磁轴和分离的算法,这是沿着不规则边界沿着边界值的表面积分,以确定边界值,以确定边界值,一种基于靶向的质量形状,不适合递质的局部效果,并以aint的速度进行了问题,以使其遇到的emitier和carter的加速效果,并将其固定在emit上,并确定了eStriend and cartered and carter的速度,并将其连接起来。处理复杂几何形状的边界方法。该算法是使用标准域分解方法并行实现的,并观察到良好的并行缩放。数值结果验证了自由级毕业生shafranov求解器的准确性和效率。
A parallel cut-cell algorithm is described to solve the free-boundary problem of the Grad-Shafranov equation. The algorithm reformulates the free-boundary problem in an irregular bounded domain and its important aspects include a searching algorithm for the magnetic axis and separatrix, a surface integral along the irregular boundary to determine the boundary values, an approach to optimize the coil current based on a targeting plasma shape, Picard iterations with Aitken's acceleration for the resulting nonlinear problem, and a Cartesian grid embedded boundary method to handle the complex geometry. The algorithm is implemented in parallel using a standard domain-decomposition approach and a good parallel scaling is observed. Numerical results verify the accuracy and efficiency of the free-boundary Grad-Shafranov solver.