论文标题

晶格简便器的渐近蜂巢

Asymptotic hollowness of lattice simplices

论文作者

Handelman, David

论文摘要

$(n-1)$ - 元组$ a =(a(a(1),\ dots,a(n-1))$,据说由正整数组成,如果存在无限的积极整数$ n $,则在$ n $ n $ n $ n $ dim-dim-dimmensional euclideans $ n $ n $ n $ n $ n $中是渐近空心的。 e_ {n-1},α(n)^t \} $是空心的(其内部没有晶格点),其中$ e_i $在最后的标准基准元素上除外,而$α(n)$是行$(a(a(a(1),\ dots,\ dots,a dots,a(n-1),a(n-1),n),n)$。如果$ \ min a(i)= 1 $,则元组是微不足道的。非平凡的渐近空心元素是根据模块化不平等的特征,结果很少。我们表明,对于一个元组$ a $,存在有效的可计算常数$ c $(取决于$ a $),以至于对于某些$ n> c $,$ k(α(n))$ is(not)is(not)是空心的,那么对于所有$ m> c $,$ k(α(m))$(分别)Hollow(分别)。当$ n = 4 $时,完全确定了非平凡的渐近空心三元三倍;其中有十一个,以及一个参数家庭。

An $(n-1)$-tuple $a = (a(1), \dots, a(n-1))$ consisting of positive integers is said to be asymptotically hollow if there exist infinitely many positive integers $N$ such that the convex hull, $K(a(n))$, in $n$-dimensional Euclidean space of $\{ 0,e_1, \dots, e_{n-1}, α(N)^T\}$ is hollow (has no lattice points in its interior), where $e_i$ run over all but the last standard basis elements, and $α(N) $ is the row $(a(1), \dots, a(N-1), N)$. The tuple is trivial if $\min a(i) = 1$. Nontrivial asymptotically hollow tuples are characterized in terms of modular inequalities, and turn out to be rare. We show that for a tuple $a$, there exists an effectively computable constant $C$ (depending on $a$) such that if for some $N > C$, $K(α(N))$ is (not) hollow, then for all $M > C$, $K(α(M))$ is (not) hollow (respectively). When $n = 4$, the nontrivial asymptotically hollow triples are completely determined; there are eleven of them, together with a one-parameter family.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源