论文标题

$ M = 1/2 $ M = 1/2 $磁化高原在有限温度下的磁力磁化高原研究

Tensor network study of the $m=1/2$ magnetization plateau in the Shastry-Sutherland model at finite temperature

论文作者

Czarnik, Piotr, Rams, Marek M., Corboz, Philippe, Dziarmaga, Jacek

论文摘要

通过完整的更新(FU)算法,在有限的温度下直接在热力学限制下,在有限温度下,在磁场上模拟了二维无限的投影纠缠对纠缠状状态张量网络的张量张量网络。我们专注于$ M = 1/2 $磁化高原的相过渡,这是在Srcu $ _2 $(BO $ _3 $)$ _ 2 $的实验中观察到的。对于最大的模拟键维,使用简单更新(SU)方案模拟了高温方案的早期演变,然后随着相关长度的增加,FU方案朝着关键制度的方案继续进行。我们应用了一个小的对称偏置场,然后使用偏置场中的简单缩放理论推断出偏置为零。联合SU + FU方案提供了临界温度的准确估计,即使结果无法完全融合在过渡附近的键尺寸中。通过广泛的缩放理论改善了临界温度估计值,该理论结合了两个不同的长度尺度:一个是由于偏见,另一个是由于有限的债券尺寸。获得的结果与二维经典伊斯林模型的通用类别中的过渡一致。估计的临界温度为$ 3.5(2)$ K,远高于实验中使用的温度$ 2.1 $ K。

The two-dimensional infinite projected entangled pair states tensor network is evolved in imaginary time with the full update (FU) algorithm to simulate the Shastry-Sutherland model in a magnetic field at finite temperature directly in the thermodynamic limit. We focus on the phase transition into the $m=1/2$ magnetization plateau, which was observed in experiments on SrCu$_2$(BO$_3$)$_2$. For the largest simulated bond dimension, the early evolution in the high-temperature regime is simulated with the simple update (SU) scheme and then, as the correlation length increases, continued with the FU scheme towards the critical regime. We apply a small symmetry-breaking bias field and then extrapolate towards zero bias using a simple scaling theory in the bias field. The combined SU + FU scheme provides an accurate estimate of the critical temperature, even though the results could not be fully converged in the bond dimension in the vicinity of the transition. The critical temperature estimate is improved with a generalized scaling theory that combines two divergent length scales: One due to the bias, and the other due to the finite bond dimension. The obtained results are consistent with the transition being in the universality class of the two-dimensional classical Ising model. The estimated critical temperature is $3.5(2)$ K, which is well above the temperature $2.1$ K used in the experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源