论文标题
PU(2)中的短路
Short paths in PU(2)
论文作者
论文摘要
Parzanchevski和Sarnak最近将Ross和Selinger的算法调整为将PU(2) - 二角元素分解为距离内$ \ VAREPSILON $内部,用于有效的概率算法,用于使用任何PU(2),用于任何pu(2),最多使用$ 3 \ log_p \ frac \ frac \ frac \ frac \ frac \ frac \ frac; 套。 Clifford+$ t $门是由$ P = 2 $产生的这样的一组。在这种情况下,我们利用Carvalho Pinto和Petit的最新工作将其提高到$ \ frac {7} {3} {3} \ log_2 \ frac {1} {\ varepsilon^3} $,并在Haskell中实现算法。
Parzanchevski and Sarnak recently adapted an algorithm of Ross and Selinger for factorization of PU(2)-diagonal elements to within distance $\varepsilon$ into an efficient probabilistic algorithm for any PU(2)-element, using at most $3\log_p\frac{1}{\varepsilon^3}$ factors from certain well-chosen sets. The Clifford+$T$ gates are one such set arising from $p=2$. In that setting, we leverage recent work of Carvalho Pinto and Petit to improve this to $\frac{7}{3}\log_2\frac{1}{\varepsilon^3}$, and implement the algorithm in Haskell.