论文标题
帕累托自适应强大的最优性通过傅立叶莫兹金消除镜头
Pareto Adaptive Robust Optimality via a Fourier-Motzkin Elimination Lens
论文作者
论文摘要
我们将帕累托自适应鲁棒优化(Paro)的概念形式化,以实现线性自适应鲁棒优化(ARO)问题。如果不能以另一个解决方案占主导地位的帕洛(Pareto),那么,最糟糕的最佳解决方案对 - 现在和拭目以待的决策是paro,即,在不确定性集中所有在所有情况下都至少在所有情况下都表现出色,并且在至少一种情况下,在所有情况下都没有表现出色。我们认为,与paro不同,现有的解决方案方法 - 包括采用静态稳健优化的帕累托稳健最优性的方法可能会在ARO中失败,并且可以占主导地位的解决方案。后者在实践中可能导致效率低下和次优表现。我们证明了Paro解决方案的存在,并提出了查找和近似此类解决方案的特殊方法。我们为设施位置问题提供了数值结果,该问题证明了Paro解决方案的实际价值。我们对Paro的分析依赖于将傅立叶摩托杆菌消除作为证明技术的应用。我们证明了该技术在分析ARO问题的分析中如何有价值。特别是,我们采用它来设计出(最坏)决策规则结构的最佳结果的更简洁,更有见地的证据。
We formalize the concept of Pareto Adaptive Robust Optimality (PARO) for linear Adaptive Robust Optimization (ARO) problems. A worst-case optimal solution pair of here-and-now decisions and wait-and-see decisions is PARO if it cannot be Pareto dominated by another solution, i.e., there does not exist another such pair that performs at least as good in all scenarios in the uncertainty set and strictly better in at least one scenario. We argue that, unlike PARO, extant solution approaches -- including those that adopt Pareto Robust Optimality from static robust optimization -- could fail in ARO and yield solutions that can be Pareto dominated. The latter could lead to inefficiencies and suboptimal performance in practice. We prove the existence of PARO solutions, and present particular approaches for finding and approximating such solutions. We present numerical results for a facility location problem that demonstrate the practical value of PARO solutions. Our analysis of PARO relies on an application of Fourier-Motzkin Elimination as a proof technique. We demonstrate how this technique can be valuable in the analysis of ARO problems, besides PARO. In particular, we employ it to devise more concise and more insightful proofs of known results on (worst-case) optimality of decision rule structures.