论文标题

稳定分层气氛的湍流动能闭合方案的缩放行为:稳态分析

Scaling Behavior of a Turbulent Kinetic Energy Closure Scheme for the Stably Stratified Atmosphere: A Steady-State Analysis

论文作者

MacDonald, Michael, Teixeira, João

论文摘要

我们为稳定分层的气氛提供了湍流动能(TKE)闭合方案,其中混合长度的动量和热量不会以相同的方式参数化。关键区别在于,尽管热量的混合长度倾向于在中性分层条件下以动量的稳定性独立混合长度,但它倾向于基于Brunt-Väisälälälälälä时间尺度和TKE的平方根,而tke的平方根则在较大稳定性的极限下。这使得获得TKE的独特稳态解决方案,如果混合长度相同,我们将不可能证明这将是不可能的。尽管该模型的相对简单性,但使用常用的模型常数从1999年合作大气表面交换研究(案例-99)的观察数据中表现出色。分析非二维速度和潜在温度梯度的缩放行为,或稳定性(校正)函数的缩放行为,表明,对于较大的稳定性,目前的模型尺度与Viterbo等人的一阶操作方案相同。 (夸脱。另外,它似乎是Baas等人TKE闭合方案的两种情况的融合。 (Bound.-Layer Meteor。127,17-36,2008)。至关重要的是,由于可以获得独特的稳态TKE,因此本模型避免了在Baas等人的一种情况下确定的非物理行为。 (2008)。

We present a turbulent kinetic energy (TKE) closure scheme for the stably stratified atmosphere in which the mixing lengths for momentum and heat are not parameterized in the same manner. The key difference is that, while the mixing length for heat tends towards the stability independent mixing length for momentum in neutrally stratified conditions, it tends towards one based on the Brunt-Väisälä time scale and square root of the TKE in the limit of large stability. This enables a unique steady-state solution for TKE to be obtained, which we demonstrate would otherwise be impossible if the mixing lengths were the same. Despite the model's relative simplicity, it is shown to perform reasonably well with observational data from the 1999 Cooperative Atmosphere-Surface Exchange Study (CASES-99) using commonly employed model constants. Analyzing the scaling behavior of the non-dimensional velocity and potential temperature gradients, or of the stability (correction) functions, reveals that for large stability the present model scales in the same manner as the first-order operational scheme of Viterbo et al. (Quart. J. Roy. Meteor. Soc. 125, 2401-2426, 1999). Alternatively, it appears as a blend of two cases of the TKE closure scheme of Baas et al. (Bound.-Layer Meteor. 127, 17-36, 2008). Critically, because a unique steady-state TKE can be obtained, the present model avoids the non-physical behavior identified in one of the cases of Baas et al. (2008).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源