论文标题
B-Spline近似的傅立叶结合定位方案
Fourier-Informed Knot Placement Schemes for B-Spline Approximation
论文作者
论文摘要
当给定数据包含噪声,跳跃或角落时,将B-Spline拟合到离散数据尤其具有挑战性。在这里,我们描述了如何通过分析数据的傅立叶频谱来有效且可与B-Splines有效,稳健地近似地定期数据集。我们的方法使用光谱过滤器的集合来产生指导有效打结的不同指标函数。特别是,我们描述了如何使用光谱过滤器来计算高阶导数,嘈杂数据的平滑版本以及跳跃不连续性的位置。我们的结位方法可以将其中一个或多个指标结合起来,以放置与数据定性特征保持一致的结,从而导致准确的B-Spline近似值,而无需许多结。我们介绍的方法是直接的,并且在选择最终结矢量之前不需要任何中间的B-Spline拟合。除了快速的傅立叶变换以转移到傅立叶空间中,该方法在线性时间内运行,很少交流。该方法应用于一个和二维的几个测试用例,包括具有跳跃不连续性和噪声的数据集。这些测试表明,该方法可以拟合不连续的数据而无需虚假振荡,并且在存在噪声的情况下保持准确。
Fitting B-splines to discrete data is especially challenging when the given data contain noise, jumps, or corners. Here, we describe how periodic data sets with these features can be efficiently and robustly approximated with B-splines by analyzing the Fourier spectrum of the data. Our method uses a collection of spectral filters to produce different indicator functions that guide effective knot placement. In particular, we describe how spectral filters can be used to compute high-order derivatives, smoothed versions of noisy data, and the locations of jump discontinuities. Our knot placement method can combine one or more of these indicators to place knots that align with the qualitative features of the data, leading to accurate B-spline approximations without needing many knots. The method we introduce is direct and does not require any intermediate B-spline fitting before choosing the final knot vector. Aside from a fast Fourier transform to transfer to and from Fourier space, the method runs in linear time with very little communication. The method is applied to several test cases in one and two dimensions, including data sets with jump discontinuities and noise. These tests show that the method can fit discontinuous data without spurious oscillations and remains accurate in the presence of noise.