论文标题

使用串联猫代码构建容忍故障的量子计算机

Building a fault-tolerant quantum computer using concatenated cat codes

论文作者

Chamberland, Christopher, Noh, Kyungjoo, Arrangoiz-Arriola, Patricio, Campbell, Earl T., Hann, Connor T., Iverson, Joseph, Putterman, Harald, Bohdanowicz, Thomas C., Flammia, Steven T., Keller, Andrew, Refael, Gil, Preskill, John, Jiang, Liang, Safavi-Naeini, Amir H., Painter, Oskar, Brandão, Fernando G. S. L.

论文摘要

我们为基于与外部量子误差校正代码连接的CAT代码提供了针对拟议中的易于故障量子计算机的综合体系结构分析。对于物理硬件,我们提出了一个声音谐振器系统,该系统与二维布局结合了超导电路。使用硬件的估计物理参数,我们对包括CNOT和TOFFOLI门在内的测量和门进行了详细的误差分析。构建了现实的噪声模型后,当外部代码是重复代码或薄矩形表面代码时,我们会数值模拟量子误差校正。我们迈向通用断层量子量子计算的下一步是用于容忍故障的toffoli魔术状态准备的协议,该方案以非常低的量子成本以物理Toffoli大门的保真度显着提高。为了达到较低的开销,我们为Toffoli州设计了一种新的魔术状态蒸馏协议。将这些结果结合在一起,我们获得了运行有用的易于故障量子算法所需的物理错误率和开销的现实全资源估计。我们发现,有了大约1,000个超导电路组件,可以构建一个容忍故障的量子计算机,该计算机可以运行当前对古典计算机棘手的电路。反过来,具有18,000个超导电路组件的硬件可以模拟超出古典计算范围的制度中的哈伯德模型。

We present a comprehensive architectural analysis for a proposed fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware, we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Using estimated physical parameters for the hardware, we perform a detailed error analysis of measurements and gates, including CNOT and Toffoli gates. Having built a realistic noise model, we numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physical Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic-state distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms. We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer that can run circuits which are currently intractable for classical computers. Hardware with 18,000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime beyond the reach of classical computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源