论文标题

弗雷德霍尔姆(Fredholm

Fredholm conditions for operators invariant with respect to compact Lie group actions

论文作者

Baldare, Alexandre, Côme, Rémi, Nistor, Victor

论文摘要

Let $G$ be a compact Lie group acting smoothly on a smooth, compact manifold $M$, let $P \in ψ^m(M; E_0, E_1)$ be a $G$--invariant, classical pseudodifferential operator acting between sections of two vector bundles $E_i \to M$, $i = 0,1$, and let $α$ be an irreducible representation of the group $ g $。然后$ p $诱导$π_α(p):h^s(m; e_0)_α\ to h^{s-m}(m; e_1)_α$之间的$α$ - 异型组件之间。我们证明,如果$ p $为{\ em thressressy $α$ - elliptic},地图$π_α(p)$是弗雷德霍尔姆(Fredholm),则是根据$ p $的主要符号和$ g $在vector bundles $ e_i $ e_i $上定义的条件。

Let $G$ be a compact Lie group acting smoothly on a smooth, compact manifold $M$, let $P \in ψ^m(M; E_0, E_1)$ be a $G$--invariant, classical pseudodifferential operator acting between sections of two vector bundles $E_i \to M$, $i = 0,1$, and let $α$ be an irreducible representation of the group $G$. Then $P$ induces a map $π_α(P) : H^s(M; E_0)_α\to H^{s-m}(M; E_1)_α$ between the $α$-isotypical components. We prove that the map $π_α(P)$ is Fredholm if, and only if, $P$ is {\em transversally $α$-elliptic}, a condition defined in terms of the principal symbol of $P$ and the action of $G$ on the vector bundles $E_i$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源