论文标题
分支布朗尼运动的固定点
The fixed points of Branching Brownian Motion
论文作者
论文摘要
在这项工作中,我们表征了所有点过程$θ= \ sum_ {i \ in \ mathbb {n}}Δ_{x_i} $ on $ \ mathbb {r} $,在分支的布朗尼人的分支上不变,带有关键漂移$ - \ sqrt $ - \ sqrt {2} $。我们的表征是唯一的假设,即几乎可以肯定地肯定是$θ(\ mathbb {r} _+)<\ infty $。
In this work, we characterize all the point processes $θ=\sum_{i\in \mathbb{N}} δ_{x_i}$ on $\mathbb{R}$ which are left invariant under branching Brownian motions with critical drift $-\sqrt{2}$. Our characterization holds under the only assumption that $θ(\mathbb{R}_+)<\infty$ almost surely.