论文标题

使用整数编程求解点集的最小凸线分区

Solving the Minimum Convex Partition of Point Sets with Integer Programming

论文作者

Sapucaia, Allan, de Rezende, Pedro J., de Souza, Cid C.

论文摘要

问题的分配到满足某些特性的较小子问题中通常是设计分裂和诱使算法设计中的关键成分。对于与位置相关的问题,可以用几何学术语将分区问题建模,因为找到了平面图的细分(例如,该分段代表地理区域)将其纳入受某些条件的区域,同时优化某些目标功能。在本文中,我们研究了其中一个几何问题之一,称为最小凸形分区问题(MCPP)。飞机上的点集合$ p $的凸线分区是$ p $的凸壳的一个细分,其边缘是$ p $的两个端点,因此所有内部面都是空的凸多边形。 MCPP是一个NP硬质问题,人们试图找到面孔数量最少的凸形分区。 我们为MCPP提供了一种新型的基于多边形的整数编程公式,这比以前已知的基于边缘的模型具有更好的双重界限。此外,我们引入了一种原始的启发式,分支规则和定价算法。这些技术的结合使能够以前的计算资源约束,以求解尽可能多的两倍的实例。提出了一项全面的实验研究,以显示我们的设计选择的影响。

The partition of a problem into smaller sub-problems satisfying certain properties is often a key ingredient in the design of divide-and-conquer algorithms. For questions related to location, the partition problem can be modeled, in geometric terms, as finding a subdivision of a planar map -- which represents, say, a geographical area -- into regions subject to certain conditions while optimizing some objective function. In this paper, we investigate one of these geometric problems known as the Minimum Convex Partition Problem (MCPP). A convex partition of a point set $P$ in the plane is a subdivision of the convex hull of $P$ whose edges are segments with both endpoints in $P$ and such that all internal faces are empty convex polygons. The MCPP is an NP-hard problem where one seeks to find a convex partition with the least number of faces. We present a novel polygon-based integer programming formulation for the MCPP, which leads to better dual bounds than the previously known edge-based model. Moreover, we introduce a primal heuristic, a branching rule and a pricing algorithm. The combination of these techniques leads to the ability to solve instances with twice as many points as previously possible while constrained to identical computational resources. A comprehensive experimental study is presented to show the impact of our design choices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源