论文标题

用于MM波巨大的MIMO系统的杂交边界与部分连接的RF体系结构

Hybrid Beamforming for mm-Wave Massive MIMO Systems with Partially Connected RF Architecture

论文作者

Majidzadeh, Mohammad, Kaleva, Jarkko, Tervo, Nuutti, Pennanen, Harri, Tolli, Antti, Latva-aho, Matti

论文摘要

为了满足未来移动系统的容量需求,可以通过使用高度指导束缚的大型MIMO技术来有效利用未充分利用的毫米波频率。混合模拟数字波束形成已被认为是大规模MIMO实现的有前途的方法,其昂贵和渴望型RF链的数量减少了。与完全连接的体系结构相比,具有部分连接的RF体系结构的混合波束形成(HBF)对于由于不太复杂的RF功率部和组合网络而引起的实际实施特别有吸引力。在本文中,我们首先使用交替优化来提出单一和多用户最大化问题作为加权最小均方根误差(WMMSE),并为混合界定器提供了解决方案。该算法专为部分连接的HBF体系结构的全阵列和子阵列的处理策略而设计。除了使WMMSE溶液最大化的速率外,我们还提出了较低的基于子阵列的零孔算法。提出的算法的性能在两个不同的通道模型中评估,即简单的几何模型和一个现实的统计毫米波模型,称为Nyusim。 WMMSE HBF算法的性能结果旨在揭示部分连接的HBF的潜力,并作为较低复杂性方法的上限。数值结果表明,与完全数字波束成形相比,与完整设计的部分连接的HBF有可能在硬件复杂性和系统性能之间提供良好的折衷。

To satisfy the capacity requirements of future mobile systems, under-utilized millimeter wave frequencies can be efficiently exploited by employing massive MIMO technology with highly directive beamforming. Hybrid analog-digital beamforming has been recognised as a promising approach for large-scale MIMO implementations with a reduced number of costly and power-hungry RF chains. In comparison to fully connected architecture, hybrid beamforming (HBF) with partially connected RF architecture is particularly appealing for the practical implementation due to less complex RF power division and combining networks. In this paper, we first formulate single- and multi-user rate maximization problems as weighted minimum mean square error (WMMSE) and derive solutions for hybrid beamformers using alternating optimization. The algorithms are designed for the full-array- and sub-array-based processing strategies of partially connected HBF architecture. In addition to the rate maximizing WMMSE solutions, we propose lower complexity sub-array-based zero-forcing algorithms. The performance of the proposed algorithms is evaluated in two different channel models, i.e., a simple geometric model and a realistic statistical millimeter wave model known as NYUSIM. The performance results of the WMMSE HBF algorithms are meant to reveal the potential of partially connected HBF and serve as upper bounds for lower complexity methods. Numerical results imply that properly designed partially connected HBF has the potential to provide an good compromise between hardware complexity and system performance in comparison to fully digital beamforming.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源