论文标题
有效的基于半决赛的二元和多级MRF的推断
Efficient semidefinite-programming-based inference for binary and multi-class MRFs
论文作者
论文摘要
成对马尔可夫随机字段(MRF)中的概率推断,即计算分区函数或计算变量的MAP估计值,是概率图形模型中的基础问题。长期以来,半决赛编程松弛一直是分析概率推断属性的理论上强大的工具,但由于典型求解器的高计算成本用于求解所得的SDP。在本文中,我们提出了一种有效的方法来计算成对MRF中的分区函数或映射估计值,而不是利用最近提出的基于坐标的快速坐标快速半芬酸盐求解器。我们还将半决赛弛豫从典型的二进制MRF延伸到整个多级设置,并开发出紧凑的半决赛弛豫,可以再次使用求解器有效地解决。我们表明,该方法在近似推理中大致提出了现有的最新技术状态(在解决方案质量和速度方面),在先前的工作中提出的基准问题。我们还表明,我们的方法可以扩展到大型MRF域,例如计算机视觉中使用的完全连接的成对CRF模型。
Probabilistic inference in pairwise Markov Random Fields (MRFs), i.e. computing the partition function or computing a MAP estimate of the variables, is a foundational problem in probabilistic graphical models. Semidefinite programming relaxations have long been a theoretically powerful tool for analyzing properties of probabilistic inference, but have not been practical owing to the high computational cost of typical solvers for solving the resulting SDPs. In this paper, we propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF by instead exploiting a recently proposed coordinate-descent-based fast semidefinite solver. We also extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver. We show that the method substantially outperforms (both in terms of solution quality and speed) the existing state of the art in approximate inference, on benchmark problems drawn from previous work. We also show that our approach can scale to large MRF domains such as fully-connected pairwise CRF models used in computer vision.