论文标题
在壁球半球上的超对称石墨烯
Supersymmetric Graphene on Squashed Hemisphere
论文作者
论文摘要
我们使用本地化计算$ \ Mathcal n = 2 $超对称混合尺寸QED的分区函数。混合尺寸QED是一个Abelian仪表理论,结合了边界的带电物质场。分区函数是复杂量规耦合$τ$的函数,R-对称性和壁板变形的选择。使用3维F-最大化确定超符号R-对称性。自由能作为压缩变形的函数允许计算包含插入能量量张量的相关函数。我们通过区分自由能相对于壁板参数来计算边界能孔张量的2分相关函数。当我们更改复杂耦合$τ$时,我们对2分函数的行为发表评论。
We compute the partition function of $\mathcal N=2$ supersymmetric mixed dimensional QED on a squashed hemisphere using localization. Mixed dimensional QED is an abelian gauge theory coupled to charged matter fields at the boundary. The partition function is a function of the complex gauge coupling $τ$, the choice of R-symmetry and the squashing deformation. The superconformal R-symmetry is determined using the 3-dimensional F-maximization. The free energy as a function of squashing deformation allows computing correlation functions that contain the insertion of the energy-momentum tensor. We compute the 2-point correlation function of the boundary energy-momentum tensor by differentiating the free energy with respect to the squashing parameter. We comment on the behaviour of the 2-point function as we change the complex coupling $τ$.