论文标题
时间反转对称拓扑超导体的边缘局部局部边缘
Marginally localized edges of time-reversal symmetric topological superconductors
论文作者
论文摘要
我们证明,二维时间逆向对称拓扑超导体(DIII类)的一维螺旋主要边缘可以通过随机边缘速度和相互作用的结合而变得无间隙和绝缘。这种无间隙的绝缘边缘使时间反转对称性不均匀,局部对称损坏的区域可以被视为静态质量电位或动态式自旋。在这两个范围内,我们都发现,这种玻璃的主要边缘通常是指数端定位的,并且陷入了Majorana零模式。有趣的是,对于统计的时间交流对称边缘,低能理论可以映射到零能量的dyson模型,表现出状态的不同密度并表现出边缘定位(即不同的定位长度)。尽管不存在弹道边缘状态运输,但局部的Majorana零模式反映了批量的非平凡拓扑。还讨论了实验签名。
We demonstrate that the one-dimensional helical Majorana edges of two-dimensional time-reversal symmetric topological superconductors (class DIII) can become gapless and insulating by a combination of random edge velocity and interaction. Such a gapless insulating edge breaks time-reversal symmetry inhomogeneously, and the local symmetry broken regions can be regarded as static mass potentials or dynamical Ising spins. In both limits, we find that such glassy Majorana edges are generically exponentially localized and trap Majorana zero modes. Interestingly, for a statistically time-reversal symmetric edge, the low-energy theory can be mapped to a Dyson model at zero energy, manifesting a diverging density of states and exhibiting marginal localization (i.e., a diverging localization length). Although the ballistic edge state transport is absent, the localized Majorana zero modes reflect the nontrivial topology in the bulk. Experimental signatures are also discussed.